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MULTI-DEGREE-OF-FREEDOM SYSTEMS 

MODULE: MMME2046 DYNAMICS & CONTROL 
 
 
Many structures can be approximated by several rigid bodies connected by flexible 
elements.  For example, the body of a caravan is connected to the axle by suspension 
springs and the axle is connected to the road by the flexible tyres.  A suitable dynamic 
model is shown below. 
 

 
 
The body and the axle can move separately from each other, so this model has 2 
degrees-of-freedom (2 independent possible motions).  We will need 2 coordinates to 
describe how the system moves; axle displacement and body displacement.   
 
We will see that the model will predict 2 natural frequencies, each of which will have a 
characteristic pattern of displacement, called a mode shape. 
 
 

DEFINITION:  

Mode shape Characteristic motion (deflection) pattern for a 
structure vibrating at one of its natural frequencies 

 
 
The demonstration system exhibits similar behaviour.  This 2 degree-of-freedom system 
also has 2 natural frequencies and 2 mode shapes. 
 
 
 
We will study 2 classes of structures that have more than one mode of vibration. 

 Multi-degree-of-freedom systems (which have discrete masses and springs) 

 Shafts and beams (which have distributed mass and stiffness) 
 
In both cases, the aim will be to calculate 

 1. The natural frequencies of the system 

 2. The corresponding mode shapes 
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EXAMPLE 1:  DEMONSTRATION SYSTEM (2 DEGREES OF FREEDOM) 
 
The approach to these problems is an extension of the one used for single-degree-of-
freedom systems, except that we will have a separate free body diagram for each of the 
rigid elements.  Each will also have its own equation of motion. 
 
STEP 1:  Dynamic Mass-Spring Model  STEP 2:  Free-body Diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The free-body diagram shows a “snapshot” of the system when x1 and x2 are both 

positive. The arrows on the diagram need to show the positive direction of the forces 
that each spring exerts on the masses.  The expression for each force is given by  

Spring force  =  Stiffness  x  Change of length. 
 
Take each spring in turn and ask yourself the following questions. 

 What is the change of length of the spring? 

 Is the spring in tension or compression? 
 
For the change of length, look at the positive displacements of the two ends of the 
spring.  If the direction of movement at both ends is the same (as it is in this example), 
the change of length will be the difference between the individual displacements.  If, 
however, the chosen positive directions for the two ends of the spring are different, the 
change of length will be the sum of the individual displacements.  You need to be 
systematic when setting up the free body diagrams. 
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STEP 3:  Equations of motion 
 
 
 
 
 
 
or 
 
 (1a) 
 
 
 (1b) 
 
 
In matrix form, 
 
 
 
 
 
 

or         0   =   x   K   +   x    M   

 
 
As with single-degree-of-freedom systems, we can check for errors in the equations at 
this stage. In particular, 

(1) the terms in the leading diagonals of [M] and [K] are always positive 

(2) the off-diagonal terms may be positive or negative 

(3) [M] and [K] are often symmetric about the leading diagonal 

 

The equations are coupled; each involves both x1 and x2.  Physically, the coupling tells 

us that if one mass moves, the other mass will also move; push the top mass down and 
the lower mass moves as well.  Put another way, motion of one mass cannot occur 
independently of the other.  Mathematically, the coupling means that the equations must 
be solved simultaneously. 
 
 
For free vibration of the system at one of its natural frequencies, the motion of each 

mass will be sinusoidal.  Use as substitutions,   tXtx ωcos11   and   tXtx ωcos22  . 

 
Substituting into (1) gives 
 
 
 
 
 
 
 
or in matrix form 
 
 
 
 (2a) 
 

 (2b) 
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or (3) 
 
 
 
or just 
 
 
where 
 
 

Note that [Z] is often called the Dynamic Stiffness Matrix. 

 
 
You should recognise equation (3) as an eigenvalue problem; normally presented in 
maths text books in the form 

 
 

 
The eigenvalues give the natural frequencies and the eigenvectors give the 
corresponding mode shapes. 
 
You will have met various ways of solving eigenvalue problems, most of which are 
appropriate to computer-based solution because of the weight of algebra involved.  In 
this module, problems will have 2 or 3 degrees-of-freedom.  These lead to 2x2 or 3x3 
matrices.  In this case, the simplest way to the solutions is as follows (use other methods 
if you prefer). 
 
 
For a non-trivial solution of equation (3), 
 
Multiplying out the determinant gives 
 
 (4) 
 
 

Equation (4) is called the Frequency Equation.  For this problem, it is a quadratic in ω2 

and will have two roots, ωn1
2 and ωn2

2, where ωn1 and ωn2 are the two natural 

frequencies of the system and gives us the first part of the information we are looking 
for. 
 
To find the corresponding mode shapes, we substitute each root back into equation (2a) 

or (2b) to get the relationship between X 1 and X 2.  Since (2) is a pair of homogeneous 

equations, we cannot find unique solutions for X 1 and X 2 separately.   

 
One way of resolving this is to give one value an amplitude of unity and then find the 

amplitude of the other relative to this.  For example, let X 2 = 1, using (2b), we get 

 
 
 
 
 
 (5) 
 
 

The vector 








2

1

X

X
 is the required Mode Shape. 

        =   X    Z 0

           =   X     M      K  0ω2

       M      K   =    Z ω
2

           =   X    B       A  0λ

  0  =    det Z
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NUMERICAL EXAMPLE: m1 = m2 = 2 kg     k1 = k2 = 200 N/m 

 
Natural frequencies: 

Substituting into (4) and solving gives  ωn1
2 = 38.1 s-2  and  ωn2

2 = 261.8 s-2 

 

Hence,  ωn1 = 6.18 rad/s = 0.98 Hz  and  ωn2 = 16.18 rad/s = 2.58 Hz 

 
 
Mode shapes: 

Mode 1: Put  ωn1
2 = 38.1 s-2  into (5) to give  


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
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






0.1

618.0

2

1

X

X
 

 

Mode 2: Put  ωn2
2 = 261.8 s-2  into (5) to give  




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





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Continue on additional pages  
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EXAMPLE 2 2D vehicle model   

 (coupled bounce and pitch) 
 
 
 
STEP 1:  In developing the dynamic model, a 
number of assumptions will be made 
 

1. There is no roll motion - pitch and vertical translation only  

2. The body is rigid, with mass, m, and moment of inertia, IG 

3. The tyres are very stiff so that the axles do not move 

4. kA and kB are the combined stiffnesses for the front and rear springs respectively 

5. The shock absorbers are ignored  

 
Selection of coordinates 

This was easy with the two masses in the first example.  Here, we could use xG 

(displacement of G) together with  (pitch angle), or we could use the two displacements 

xA and xB.  Either pair will describe the motion of the body. 

 
Q Does it matter which pair we use ? 
A NO - provided the equations of motion are right 
 
Q What equations of motion will we have ? 
A 1.  vertical translation – we will need the absolute acceleration of the centre of mass 

2.  angular motion about G (there is no fixed axis on AB) – we will need the 
angular acceleration of AB  

 

This suggests xG and  would be good choices.  If we chose the alternatives of xA and xB, 

we would need to find expressions for xG and  in terms of xA and xB and then 

differentiate twice to get the two acceleration terms.  This can be done, but is a bit more 
complicated. 

AB

G

A

ab

kAkB

Equilibrium 
position

G

B A

ab

kAkB

Equilibrium 
position

G

B

Centre of mass
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STEP 2:  Free Body Diagram 
 
To draw the free body diagram, it is helpful to draw the displaced position of AB.  The 
deflections at A and B can then be seen clearly, making it easier to work out the forces in 
the springs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For small , the increases in spring lengths are 

 
 
 (1) 
and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continue on additional pages  
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θGA axx 

θGB bxx 
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NUMERICAL EXAMPLE: 

m = 900 kg IG = 1000 kgm2 

kA = 25 kN/m kB = 10 kN/m 

a = 1 m b = 2 m 
 
Natural frequencies: 
The frequency equation becomes 
 
 
 
 
 
or 
 
 
Expanding,  
 

Roots are  ωn1
2 = 37.8 s-2  and  ωn2

2 = 66.0 s-2 

 

Hence,  ωn1 = 0.98 Hz  and  ωn2 = 1.29 Hz 

 
 
Mode shapes: 

Mode #1: Put  ωn1
2 = 37.8 s-2  into (3) to give  

rad

m
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Mode #2: Put  ωn2
2 = 66.0 s-2  into (3) to give  

rad

m
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Torsional Systems 
 
Most mechanical power is transmitted via rotating shafts.  Examples include the turbine-
alternator sets in power stations, the tail rotor drive in a helicopter and the propeller 
shaft in a ship’s propulsion system.  One of the problems for the vibration engineer is 
that power surges or sudden changes in load can induce transient torsional oscillations 
that are superimposed on the uniform rotation.  Also, the drive torque can sometimes 
contain fluctuating components that can set up steady state torsional oscillations in the 
system.  In each case, the torsional natural frequencies and modes shapes are required 
to study the behaviour. 
 
Example   Main drive shaft of a gas turbine engine 
 
There are two drive shafts in the V2500 engine, which powers the majority of Airbus 320 
aircraft (and several others) currently in service.  The main shaft transmits power from a 
5-stage turbine at the rear to the fan and the first 3 compressor stages.  The whole 
assembly rotates freely, supported by three bearings.  The dynamic model will assume 
that the fan and turbine assemblies can be treated as rigid elements and that the mass 
of the shaft can be neglected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1 Dynamic mass-spring model 
 
 
 
 
 
 
 
 
 
 
 
 

Main shaft

Torsional stiffness k

Fan assembly

Moment of Inertia I1

Turbine assembly

Moment of Inertia I2

Front bearing Centre bearing Rear bearing

Main shaft

Torsional stiffness k

Fan assembly

Moment of Inertia I1

Turbine assembly

Moment of Inertia I2

Front bearing Centre bearing Rear bearing

Main shaft

Torsional stiffness k

Fan assembly

Moment of Inertia I1

Turbine assembly

Moment of Inertia I2

Front bearing Centre bearing Rear bearing
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Step 2  Free body diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continue on additional pages  

 
Note on Rigid Body Modes 
 
A Rigid Body mode is characterised by a natural frequency equal to zero and by a mode 
shape in which there is no deformation of any of the parts; that is, the system moves as 
if it was a single rigid body. 

Any structure that is capable of moving without deformation (this is true of any structure 
not connected to ground – Sheet 2, Q1(a) and Q1(c) are other examples) WILL have one 

(or more) rigid body modes with n = 0.  It follows that the frequency equation will not 

contain a constant term.  Since you can tell in advance that this should be the case, it’s a 
useful check that the frequency equation is correct. 
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SUMMARY OF APPROACH 
 
 
Objective: To find the natural frequencies and the corresponding mode shapes 
 
 

1. Develop a dynamic model of the structure 
 
2. Draw free body diagrams following the three stages: 

(i) Start with the system in equilibrium and separate it into its constituent 
free bodies by drawing them without any of the restraining springs.  The 
forces exerted by the springs are added in stage (iii). 

(ii) Select motion coordinates to describe how the system will deflect from its 
equilibrium position and mark them on the diagram showing your chosen 
positive directions. 

(iii) Apply positive deflections to all of the chosen motion coordinates, identify 
the forces (and/or moments) that result and draw them on the diagrams. 

 
3. Write down the equations of motion 

These will be in the form               =   x    K   +   x    M 0  

 
4. Check the form of the equations 

The expressions for the leading diagonal terms in  M  and  K  MUST be 

positive.  You HAVE DEFINITELY made a mistake if they are not. 
 

 M  and  K  should NORMALLY be symmetric.  You MAY have made a 

mistake if they are not. 
 

5. Substitute       t  X   =    t  x ωcos  

 

6. Write the equations in the form           =   X   Z 0  

You can skip step 5 and write        M     K   =   Z ω
2   directly if you wish. 

 

7. Find the frequency equation    0  =    Zdet  

If the system is not attached to ground anywhere, it will have a rigid body 
mode, which has a frequency equal to zero.  In this case, there will be no 
constant term in the frequency equation, which is a useful check that the 
frequency equation is correct. 

 
8. The roots of the polynomial give the natural frequencies. 
 

9. Substitute each root in turn back into          =   X   Z 0  and solve for the mode 

shape vectors,   X  
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